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Abstract: Fuel cells are electrochemical devices that convert chemical 
energy to electrical energy with very high efficiency, and with very low 
levels of environmental emissions.  The reformation of vegetable oil crops 
for fuel cell uses is not well known; yet vegetable oils such as canola oil 
represent a viable alternative and complement to traditional fuel cell 
feedstocks.  This report summarizes a study conducted to identify various 
Montana oil crops available for reforming as a feedstock fuel in fuel cell 
applications.  The use of vegetable oils, or bio-fuels, in Montana alone 
could potentially sustain more than 6000 fuel cell units, 5.0 kW in size.  
Many vegetable oils were found to be viable options for production and 
use in fuel cells in Montana.  This project was undertaken to demonstrate 
a year-long operation of a fuel cell in Yellowstone National Park using 
canola oil feedstock.  This study performed a literature search to:  
(1) determine the market availability of agricultural crops that produce 
vegetable oil, and (2) determine the amount of vegetable oil that could be 
extracted to serve as a feedstock in fuel cell applications. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation 
of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product 
names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as 
an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Preface 
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5TS5703C271. John W. Adams and Craig Cassarino are associated with 
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Director was Gary W. Schanche, CEERD-CVT. The Director of CERL is Dr. 
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Center (ERDC), U.S. Army Corps of Engineers. The Commander and Ex-
ecutive Director of ERDC is COL James R. Rowan, and the Director of 
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Unit Conversion Factors 

Multiply By To Obtain 

acres 4,046.873 square meters 

cubic feet 0.02831685 cubic meters 

cubic inches 0.00001638706 cubic meters 

degrees (angle) 0.01745329 radians 

degrees Fahrenheit  (5/9) x (°F – 32) degrees Celsius 

degrees Fahrenheit (5/9) x (°F – 32) + 
273.15. kelvins 

feet 0.3048 meters 

gallons (U.S. liquid) 0.003785412 cubic meters 

horsepower (550 ft-lb force per sec-
ond) 745.6999 watts 

inches 0.0254 meters 

kips per square foot 47.88026 kilopascals 

kips per square inch 6.894757 megapascals 

miles (U.S. statute) 1.609347 kilometers 

pounds (force) 4.448222 newtons 

pounds (force) per square inch 0.006894757 megapascals 

pounds (mass) 0.4535924 kilograms 

square feet 0.09290304 square meters 

square miles 2,589,998 square meters 

tons (force) 8,896.443 newtons 

tons (2,000 pounds, mass)  907.1847 kilograms 

yards 0.9144 meters 
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1 Introduction 

Background 

Fuel cells are electrochemical devices that convert chemical energy to elec-
trical energy with very high efficiency. Since fuel cell produce electricity by 
electrochemical conversion, they generally exhibit “good neighbor charac-
teristics”; i.e., they are quiet and produce very low levels of environmental 
emissions. Fuel cell technology is also sufficiently developed to meet the 
electrical demand at some sites in Yellowstone National Park. These at-
tributes make fuel cell technology very desirable for electricity generation, 
and perhaps cogeneration, in environmentally sensitive locations like Yel-
lowstone. 

Hydrogen is necessary for fuel cells, but it is not widely available in its 
elemental state. Traditional feedstocks for fuel cells include hydrocarbons 
such as natural gas and propane that must be reformed into a hydrogen-
rich gas. The reformation of vegetable oil crops for fuel cell use is not well 
known, yet vegetable oils do represent a viable alternative and comple-
ment to traditional fuel cell feedstocks. Canola oil is one of several valuable 
renewable vegetable oil crops produced in Montana and other locations 
near Yellowstone National Park. In fact, canola biodiesel has already been 
used by Yellowstone National Park in its “Truck in the Park” project 
(Haines and Evanoff 1998), but the Park eventually migrated to soy bio-
diesel because it was more readily available and affordable.  

This project was undertaken to demonstrate a year-long operation of a fuel 
cell in Yellowstone National Park using canola oil feedstock. Preliminary 
to the demonstration, a literature study was done to: 

• identify reformer technology development and applications  
• establish the state-of-the-market for reformer technology with an em-

phasis on agricultural biomass.  
• identify and quantify the potential for Montana agricultural crops to 

yield oils to be used as a feedstock for fuel cell applications.   

Objectives 

The overall objective of this project is to perform a 1-year demonstration of 
a fuel cell operating on canola oil at Yellowstone National Park. The spe-
cific objective of this preliminary work was to conduct a literature study to 
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determine the availability of vegetable oil producing agricultural crops in 
Montana, and to determine the amount of hydrogen that could be gener-
ated from the oils harvested for use in a fuel cell system. 

Approach 

The overall project is to be conducted in three phases: 

1. Assess biofuel reformation technology.  This work was previously 
completed and documented (Adams, et. al 2004).   

2. Assess biofuel crop production.  This report describes Phase 2 in which 
six species of crops in Montana were identified to produce vegetable 
oil.  A model was developed that calculated the amount of hydrogen 
that could theoretically be produced from these agricultural crops.  An 
investigation of the production of biodiesel was also undertaken. 

3. Complete a 1-year canola oil fuel cell demonstration at Yellowstone 
National Park.  Phase 3 should begin in the Fall of 2006. 

Scope 

Investigation of the costs to plant, harvest, and reform the vegetable oils 
considered in this study was beyond the scope of this research.   

Mode of Technology Transfer 

This study forms the basis for continuing research into the technical and 
operational issues associated with the operation of a fuel cell on vegetable 
oil. This report will be made accessible through the World Wide Web 
(WWW) at URL: 

http://www.cecer.army.mil 

 

http://www.cecer.army.mil/
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2 Biodiesel Fuel — How It Is Derived 

Vegetable Oil Crop Yield Model 

Tables 1 and 2 list expected yields of Montana grown vegetable oils and the 
hydrogen they could generate. Included crops are canola, crambe, mus-
tard, rapeseed, safflower, and sunflower. These six species were selected 
for evaluation based on the production requirements for each crop. By 
comparison, other less-known crops such as camelina are poorly defined 
in terms of production. Crops such as safflower and sunflower are also as 
well known as canola. Consequently, more variables are used to define ca-
nola, flax, safflower, and sunflower. Crops with relatively little production 
information (e.g., crambe and mustard) used fewer variables. Therefore, 
areas defined for crambe and mustard may be over-estimated since fewer 
variables constrain the defined production areas. Preliminary trials of both 
these species, however, indicate they are highly adaptable to many Mon-
tana environments. 

For the purpose of this study, it was assumed that 100 percent of the hy-
drogen could be extracted from the vegetable oil. In most applications, 
however, a 70 to 80 percent assumed conversion efficiency would be more 
accurate. Data for potential production of oilseeds was derived by entering 
variables into an ARC/Info crop mapping system using Global Positioning 
Satellite (GPS) technology developed by Montana State University. This 
crop mapping system uses as many as 150 variables, and each can be 
evaluated at a multitude of levels. For example, one such variable would be 
“days of frost-free production,” which, for canola, was set at 110 to 115 
days. Each variable can be layered on top of the prior variable to create a 
crop map of all conditions defined.  

Figure 1 shows such a crop map for a canola oil crop, which indicated a de-
fined area of high productivity for the specified crop. The grid units are de-
fined as 2 by 3 miles in size with at least 50 percent of that area being 
highly adapted to canola production. Other variables include soil type, 
rainfall patterns, soil types, first and last frost, etc.  

 



ERDC/CERL SR-06-28 4 

Table 1.  Oil/hydrogen production using Class I land (optimum production 
environment) in Montana. 

Crop 
Acres 

Planted 

Seed 
Yield 

(lbs/acre) 

Seed 
Production 

(lbs) 
% 0il 

Yield* 

Oil 
Recovered 

(lbs) 
% H2 

Yield** 

Total H2 
Production 

(lbs) 

Canola 55,000 1,200 66,000,000 39% 25,740,000 11% 2,831,400 

Crambe 68,000 1,000 68,000,000 32% 21,760,000 14% 3,046,400 

Mustard 85,000 1,000 85,000,000 32% 27,200,000 10% 2,720,000 

Rapeseed 35,000 1,100 38,500,000 39% 15,015,000 14% 2,102,100 

Safflower 65,000 1,200 78,000,000 34% 26,520,000 12% 3,182,400 

Sunflower 25,000 900 22,500,000 42% 9,450,000 10% 945,000 

Total per annum   358,000,000  125,685,000  14,827,300 

*% pounds of oil yield per pounds of seeds 

** % pounds of H2 yield per pounds of oil 

Table 2.  Oil/hydrogen production using Class I and Class II land (optimum 
and economically feasible production environments) in Montana. 

Crop 
Acres 

Planted 

Seed 
Yield 

(lbs/acre) 

Seed 
Production 

(lbs) 
% Oil 

Yield* 

Oil 
Recovered 

(lbs) 
% H2 

Yield** 

Total H2 
Production 

(lbs) 

Canola 110,000 1,200 132,000,000 39% 51,480,000 11% 5,662,800 

Crambe 80,000 1,000 80,000,000 32% 25,600,000 14% 3,584,000 

Mustard 400,000 1,000 400,000,000 32% 128,000,000 10% 12,800,000 

Rapeseed 65,000 1,100 71,500,000 39% 27,885,000 14% 3,903,900 

Safflower 100,000 1,200 120,000,000 34% 40,800,000 12% 4,896,000 

Sunflower 65,000 900 58,500,000 42% 24,570,000 10% 2,457,000 

Total per annum   862,000,000  298,335,000  33,303,700 

*% pounds of oil yield per pounds of seeds 

** % pounds of H2 yield per pounds of oil 

In many areas, crops such as canola, crambe, mustard, and rapeseed over-
lap in production requirements. Since no more than one fourth of the suit-
able land can be used annually for any one crop, crop rotation was consid-
ered essential. For example, in the first year of production, an acre of land 
could be planted to canola. The following year, the same acre could be 
planted with sunflower, followed by crambe and safflower. In the fifth 
year, the land would return to canola. This would achieve maximum land 
use for fuel production.  
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Figure 1.  Class I land available (shown as light areas) to plant canola crop on 

an annual basis in Montana. 

Land types used in this analysis were Class I and Class II farmlands. These 
lands represent the typical farmlands being used in agriculture. In the se-
lection process, the availability of farm equipment and producers was as 
equally important as the adaptation of the land itself. Other conditions 
(e.g., rainfall, soil pH, salinity, and frost-free period) were variable. For 
example, rainfall for dry land production was established as 12 in. for ca-
nola and sunflower, but 14 in. for safflower. For mustard, a minimum rain-
fall of 10 in. was used.  

Selection of a Vegetable Oil Hydrogen Source 

Feedstocks used for the generation of hydrogen are typically introduced 
into a reformer system as a fluid, for ease of operation. The most obvious 
choice of a fluid would be in the form of water, alcohol, or oil. A catalytic 
system should be capable of isolating hydrogen from any of these media. 
However, the yield of hydrogen from water is relatively low due to the low 
molecular weight of water (MW=18) and low yield of hydrogen (11 percent 
by weight, assuming 100 percent efficiency). Water generates no byprod-
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ucts and therefore has little economic advantage beyond fuel generation 
and must be decontaminated before use. Alcohols improve efficiency (20 
percent hydrogen yield), but are relatively expensive to generate from 
natural sources. They do, however, generate byproducts with economic 
value. The best combination of yield and molecular weight for the genera-
tion of hydrogen appears to be in vegetable oil or animal fats. Since animal 
fats are not fluid at normal operating temperatures and their availability is 
limited, they were not considered further in this study. 

Vegetable oils can be crafted from a multitude of sources suitable for pro-
duction in Montana. These vegetable oils and others, e.g., soy, may also be 
suitable for production in other states. Montana vegetable oils typically are 
derived from: 

• canola (Brassica napus or B. rapa) 
• crambe (Crambe abysinica) 
• mustard (Brassica juncea) 
• rapeseed (Brassica napus)  
• safflower (Carthamus tinctorus) 
• sunflower (Heliothus annus). 

The oils are easily derived by crushing the seed and extracting the oils via 
solvent systems. These solvents are typically recycled hexane, alcohol, or 
carbon dioxide. The extracted vegetable oils remain fluid at relatively low 
temperatures (–10 to –20 °C) and are relatively efficient as sources of hy-
drogen (10 to 14 percent by weight). In their native state, vegetable oils ex-
ist primarily as triglycerides (three fatty acids, R1, R2 and R3 in Figure 2, 
bonded to a molecule of glycerin). This study assumed all vegetable oils to 
be produced as triglycerides. 

CH2OOR1

| 

CHOOR2

| 

CH2OOR3

Figure 2.  A triglyceride (vegetable oil) molecule. 

Conversion of Vegetable Oil to Biodiesel 

Biodiesels typically have shorter molecular chains compared to their origi-
nating oils (Table 3). Shorter molecular chain materials are, in general, 
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easier to reform to high quality syngas for fuel cell applications. “Fuel ref-
ormation,” also known as “fuel processing,” is used to convert hydrocar-
bons such as canola and other vegetable oils into hydrogen (H2) rich gas 
streams. The remaining components in reformed fuel streams are de-
signed to be either carbon monoxide (CO) or carbon dioxide (CO2), de-
pending on the fuel cell type used subsequent to the reformer. Some fuel 
cells may be poisoned by CO, CO2, and other impurities while other fuel 
cells, such as high temperature fuel cells, may use CO as a fuel. Fuel ref-
ormation can occur independently at temperatures around 1400 °C. Often, 
a catalyst is used to lower this reaction temperature to 500 to 800 °C to 
reduce the size of the reformer and to achieve better control of reaction 
kinetics. 

Table 3.  Selected fuel formulas. 

Fuel Average Empirical Formula 

Gasoline C7.3H14.8O0.1

Dodecane (Diesel) C12H26

Jet Fuel A C12.5H24.4

Canola Oil C59H94O5

100% Canola Biodiesel (CME) C19H35O2 

100% Canola Biodiesel (CEE) C20H37O2

100% Rapeseed Biodiesel (RME) C41H28O2 

100% Rapeseed Biodiesel (REE) C22H43O2

100% Soy Biodiesel C18.8H34.6O2

Blending the vegetable oil with a metallic salt and water causes gums and 
other contaminants in the oil to flocculate, or become solid. These solids 
can be removed from the oil. This solid contaminant is typically called 
“soap stock” and can be used in cosmetics or other industrial applications. 
The clarified oil is then remixed with a metallic salt (e.g., sodium or potas-
sium hydroxide) and an alcohol (e.g., methanol or ethanol). This blend is 
placed under heat and pressure producing three new products:  
• an ester of the alcohol, e.g., biodiesel 
• fatty acids 
• glycerin. 

The type of ester produced is determined by the alcohol used in its manu-
facture. Methanol is typically derived from petroleum processing and is 
more toxic and hazardous to handle compared to ethanol. Ethanol can be 
produced from a variety of agricultural products, but is more expensive 
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than methanol. By combining alcohols and vegetable oils under heat, pres-
sure, and a catalyst, two products can be generated:  

1. Methyl or ethyl esters- long chain polymers of fatty acids and alcohols 
(designated as Rx in Figure 3) 

2. Glycerin (or glycerol).  

By producing esters, the triglycerides become simple long chain molecules, 
known as biodiesels (Figure 3). Typically the alcohol used for the conver-
sion of vegetable oils to biodiesels is either methanol or ethanol. When 
ethanol is used, the biodiesel would be a completely renewable natural 
product.  

Preliminary work done to characterize and evaluate reforming technolo-
gies (Adams et al., August 2004) indicates that catalytic partial oxidation 
(POX) reforming appears to be the most applicable technology for canola 
(rapeseed) oil or canola (rapeseed) biodiesel reforming. Catalytic partial 
oxidation reformers had the most related experience and therefore the 
most potential to meet the expectations for canola (rapeseed) reformer / 
fuel cell application. 

CH2OOR1   catalyst CH2OH   

|    |   

CHOOR2 + 3CH3OH  3CH3OORx + CHOH 

|    |   

CH2OOR3    CH2OH   

Vegetable oil  3 Methanols  Biodiesel  Glycerin 

Figure 3.  Biodiesel production. 
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3 Results of Analysis 

Assuming a maximum production system with optimum production con-
ditions, the theoretical hydrogen production annually would equal ap-
proximately 14.82 million pounds from oilseeds in Montana (Table 2). If 
the variables are relaxed to allow lands with some limitations to enter pro-
duction, potential oil production could be increases to more than 298 mil-
lion pounds, resulting in a theoretical hydrogen production of 33 million 
pounds (Table 3). Maximum production represents maximum input in-
cluding Class I soils, high rainfall or irrigation, and optimum frost-free pe-
riod. Class II lands involve production on lands of low productivity (lower 
fertility, salt, or low rainfall). Oilseed crops will be competing for class I 
lands with other crops. Class II lands are less competitive and more likely 
to be used for oilseed production. 

As oils become more unsaturated (lacking hydrogen), yields of hydrogen 
will decrease. Polyunsaturated oils include flax, safflower, soybean, and 
sunflower. Higher oleic oils such as canola, crambe, and mustard have 
more saturated oils and will yield more hydrogen. However, high oleic ver-
sions of safflower, sunflower (and soon soybean) oils will be available as 
well. The yield of pounds of hydrogen per pound of oil (% H2 yield) be-
tween the six crops in this study averages approximately 0.12 lb of hydro-
gen per pound of oil. 

These results show seeds, oil, and hydrogen yields to be nearly the same 
for the six selected oil crops (Table 4). Differences are due to saturation of 
the oil derived from each crop planted. Other changes could result from 
efficiencies that would affect the yields at each stage of production.  

Table 4.  Oil/hydrogen production per acre. 

Crop 

Oil 
Recovered 
(lbs/acre) 

Total H2  
Production  
(lbs/acre) 

H2 Yield 
(lbs H2/lbs Oil) 

Canola 468 51.5 0.11 

Crambe 320 44.8 0.14 

Mustard 320 32.0 0.10 

Rapeseed 429 60.1 0.14 

Safflower 408 49.0 0.12 

Sunflower 378 37.8 0.10 
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For this DOD/CERL project, “Field Demonstration of Advanced, Pre-
commercial Technology for the Conversion of Canola Oil for use as an Ac-
ceptable Fuel in Fuel Cell Applications,” CERL and its Fuel Cell Test and 
Evaluation Center have projected consumption rate of 100 gal of canola 
biodiesel per week (with 24/7 operation) for a 5.0 kW fuel cell. Assuming a 
projected consumption rate, and using a volume factor of 5.5 : 5.0 for the 
conversion of a vegetable oil to its biodiesel corollary, the estimated an-
nual production (theoretical maximum) of the six identified Montana oil 
crops for fuel cell applications could (theoretically) sustain more than 
6,000 fuel cell units, 5.0 kW in size, on an annual basis. Table 5 lists the 
data inputs and shows the calculation in more detail. 

Table 5.  Calculation of number of fuel cells capable to be supported 
(theoretically) from biodiesel derived from Montana seed crop grown on 

Class I and II lands. 

Data Source 

A Oil Yield 298,000,000 pounds of vegetable oil 

B Density 8 pounds per gallon 

C Oil Yield 37,250,000 gallons of vegetable oil 

D Biodiesel Conversion Factor 1.1 oil to biodiesel 

E Biodiesel Yield 33,863,636 gallons of biodiesel 

F 5 kW Fuel Cell Consumption 100 gallons of biodiesel per week* 

G Annual 5 kW Fuel Cell Consumption 5,200 gallons of biodiesel per year* 

H Number of 5 kW Fuel Cells Supported 6,512 number of 5 kW fuel cell units 

*assuming 24/7 operation.  

Formula: 

Number of Fuel Cell Units = 298,000,000 6,512
8 1.1 5,200

A
B D G

= =
× × × ×

 

This number represents the number of 5kW fuel cells (similar to one specified for the Yellow-
stone National Park demonstration) that can be operated for 1 year on the vegetable oil pro-
duced on Class I and II land in the State of Montana. 
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4 Conclusion 

This study concludes that vegetable oils represent a viable alternative and 
complement to traditional fuel cell feedstocks. This study identified and 
quantified the potential for six different Montana vegetable oil crops as a 
fuel feedstock for fuel cell applications. Using a combination of Class I and 
Class II lands, a total oil recovery of more than 298 million lb (37.25 mil-
lion gal) is estimated from all six crops. This level of annual production is 
estimated to be sufficient to sustain more than 6,000 fuel cell units, 5.0 
kW in size. 

The current project to demonstrate a 5.0 kW fuel cell in Yellowstone Na-
tional Park using a canola biodiesel will confirm various fuel cell system 
operating parameters, including biodiesel consumption. Future projects 
could be designed to assess the feedstocks derived from oil crops other 
than canola. 

 



ERDC/CERL SR-06-28 12 

Abbreviations 

Term Spellout

CERL Engineer Research and Development Center, Construction Engineering Research Labora-
tory 

C carbon  

CO carbon monoxide 

CO2 carbon dioxide 

DOD U. S. Department of Defense 

H2 hydrogen 

kW kilowatt 

lbs pounds 

LTI Leonardo Technologies, Inc. 

MSU Montana State University 

MW molecular weight 

O oxygen  

R designation of various chemical elements 

YNP Yellowstone National Park 
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